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Abstract. The problem of lhe stability of bipolamns is discussed under the assumption of 
the Frohlich electron-phonon interaction. A variational wavefunction for the bipolaron 
is proposed in a general form, which yields the translationally invariant wavefunction as 
a special case. A minimization of the expectation value of the Hamiltonian leads to 
the best estimates if the trial wavefunction is localized. In a broad range of material 
parameten, the upper bounds obtained for the ground-state energy of the bipolaron are 
better than those obtained with the help 01 methods fully exploiting the translational 
symmetry. A similar propeny has been obselved for the free polarons for which the 
lowest upper bounds on the ground.state energy in the strong-coupling limit are obtained 
with the help of localizd trial wavefunctions. This suggests that the stability of large 
bipolarons is connected wid) their self-trapping. Because of this tendency to localization 
we do not expect that the large bipolarons contribute to the bipolaronic mechanism of 
superconductivity in three-dimensional crystals 

1. Introduction 

Electrons in crystals interact with Iatrice vibrations which leads to many interesting 
phenomena; one of them is the formation of bipolarons ll-91. In polar crystals, the 
long-range Frohlich interaction between the electron and LO phonons dominates all 
the electron-phonon couplings and leads to the creation of large polarons, which 
are also called the Frohlich or optical polarons. The system of two large polarons 
(a bipolaron) can form a stable bound state if the electron-phonon coupling is suf- 
ficiently strong. The criteria for the stability of large bipolarons have been given 
in [4,5]. Attempts [6-9] were made to extend the region of the bipolaron stability 
using translationally invariant computational methods. The theoretical description 
of the properties of bipolarons became important because of a revival of the con- 
cept of bipolaronic superconductivity [10-13]. It has been suggested [lo-131 that 
high-temperature superconductivity can be explained as a result of the Bose-Einstein 
condensation of large bipolarons. The bipolaronic mechanism of superconductivity 
can be applied to a description of high-T, superconductois if the bipolarons are stable 
and mobile. 

This present paper provides a theoretical description of the properties of large 
bipolarons. In section 2, the problem of the translational symmetry of the bipolaron 
is discussed and a trial wavefunction is proposed in a general form which yields a 
translationally invariant wavefunction as a special case. In section 3, the numerical 
results obtained for both the polaron and the bipolaron with the use of the trial 
wavefunction with broken translational symmetry are presented. In section 4, the 
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results obtained by othcr workers and the bipolaronic mechanism of superconductivity 
are discussed. Moreover, a physical interpretation of the present results is given. 

J Adomowski ond S Bednarek 

2. Theory 

Electrons in polar crystals are coupled to LO phonons via the FrdhJich interaction. 
Neglecting other electron-phonon couplings and assuming the effective-mass approxi- 
mation for the electrons, we can write the Hamiltonian for the system of two electrons 
(holes) and Lo phonon field in the centre-of-mass system in the following form: 

x [exp($k. r)  -t exp(-+ib .  v ) ] u k  + HC}. (1) 

Here, R and T are the centre-of-mass and relative position vectors of the electrons, 
respectively, 712 is the effective band mass of the electron (hole), w is the frequency 
of the LO phonon, U: and uk are the LO phonon creation and annihilation operators, 
respectively, uh is the clectron-phonon interaction amplitude given by 

(2) 
uk =~- i i / k j ( ? r r e ' / ehw~)  1 1 2  

where k = lkl, l / e  = l / e m  - 1/e0, e-  and are the optical and static dielectric 
constants, respectively, and R is the quantization volume. Equations (1) and (2) define 
the Frohlich Hamiltonian for the bipolaron. The last term in the Hamiltonian (1) 
describes the interaction of the charge carriers with the polarization field induced by 
the optical vibrations of the crystal lattice. The interaction amplitude (2) results from 
a Fourier transform of the electrondipole interaction potential. The lattice distortion 
around the electron caused by this long-range interaction has a large spatial extension, 
Le. the radius of the Friihlich polaron b large in comparison with the lattice constant. 
A system composed of the two large polarons is called a large (Frohlich) bipolaron. 

The symmetry properties of the Hamiltonian (1) can be discussed if we introduce 
the operator to the translation by the vector t: 

T ( t )  = Tph(t)Tel(t) (3) 

which is the product of two operators: the translation operator for the phonon field 

and the translation operator for the electrons 

The transformation properties 
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and 

T!,(t)RT,,(t) = R+ t (66) 

T t ( t ) H T ( t )  = H. (7) 

lead to 

Therefore, the Hamiltonian of the bipolaron is translationally invariant. The 
SchrBdinger equation for this Hamiltonian can be solved by variational means. The 
variational trial wavefunction for the bipolaron has been proposed [4,5] in the form 

1%) = QeiUISo) (8)  

where $e, = bel(R, T )  is the electronic part of the wavefunction, lxo) is the phonon 
vacuum state having the properties a.kjxo) = 0 and (xolxo) = 1, and U is the 
operator of unitary transformation, which depends on the electronic coordinates as 
well as on the phonon creation and annihilation operators. The operator U uansforms 
the phonon operators uk and a: into new operators; thus, this is the operator of a 
canonical transformation. 

This operator can be written as 

U = e x p ( S - S + )  (9) 

where the operator S has the form 

S = E F , ( R , T )  exp( ik .R)  uk 
k 

and F,.(R,T) is an arbitrary function. It should be noted that the translational 
invariance of the operator U is not necessary. We only have to require that C' does 
not change the expectation values of the Hamiltonian, which is guaranteed by their 
unitarity. 

The unitary transformation in the form given by equations (9) and (10) leads to 
a great variety of possible trial wavefunctions for the bipolaron, which differ between 
themselves in the choice of F k ( R . v ) .  This function can be proposed in the following 
form: 

F k ( R , v j  = f k ( 7 . j t g k  exp[- ik .  ( R - B o ) ]  (11) 

which is useful in further discussion. The functions fk  and gk can be dctermined 
by minimizing the expectation value of the Hamiltonian (1) calculated with the help 
of the trial function (S). In [SI, according to the method of optimized canonical 
transformation [ 14, IS], these functions have been proposed in an analytical form 
dependent on variational parameters, The proposed [SI functions are 

f k ( T r ) =  v k [ ~ , / ( p : a : k ~  t ~)] [exp( ; i l t .v )  +exp(- ; ik .v)]  (12a) 

and 

(126) 
2 2 2  gk = vk&/(/Jzapk t 1)' 
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where a,, is the free-polaron radius equal to (h/2mw)' / ' ,  and X,,X,,p, and pz 
are the variational parameters. Comparing equations (11) and (12) with the corre- 
sponding formula (equation (9) in [5] ) ,  we should remember that the position vectors 
of the electrons are expressed by the centre-of-mass and relative position vectors as 
follows: T ,  = R + $r and r2 = R - i v ;  moreover, in [5],  R, = 0. 

I Adnntowski and S Bednarek 

Substituting (11) into equation (lo), we get 

S =  c [ f k ( v )  e x p ( i h . R ) + g k  exp[ik.R,)]a,. (13) 
k 

The action of the translation operator T ( t )  on LJ is reduced to its action on S, 
which gives no change in the first term on the right-hand side of equation (13), but 
the second term is multiplied by exp(-ik.t). Thus, the presence of the second term 
in equation (13) breaks the translational symmetry of the bipolaron trial wavefunction. 
Nevertheless, this wavefunction does not distinguish any position in a crystal. The 
vector R, in equations (11) and (13) is completely arbitrary; in particular, in [5] it has 
been chosen as R, = 0. The trial wavefunction defined by equations (8), (9), (12) 
and (13) describes the bipoldIOn, which is localized around any point in a crystal. This 
means that the bipolaron becomes self-trapped which is closely connected with the 
similar self-trapping of thc polaron in the strong-coupling limit [l] (see also section 4). 

Canonical transformation (9) becomes translationally invariant if we choose 
gk = 0 in equation (13), which corresponds to the choice A, = 0 in equation 
(126). Then, the operator S takes on the particular form 

k 

In this case, the variational wavefunction (S) of the bipolaron is also translationally 
invariant provided that the electronic wavefunction in equation (8) possesses this 
symmetry. 

When performing the calculations urith trial wavefunction (8) it is helpful to 
construct an effective Hamiltonian for the electrons, which is defined as follows: 

Two equivalent methods for the evaluation of thc effective Hamiltonian are discussed 
in the appendix. The explicit form of the effective Hamiltonian obtained from equa- 
tion (15) using the transformation L' given by equations (9) and (14) is 

When solving the eigenvalue problem for Hamiltonian (16) one should first separate 
out the centre-of-mass motion. For this aim, one can propose a variational solution 
of this problem by assuming that the electronic wavefunction is in a form of the 
product of two functions: a plane wave exp( iQ . E )  and an arbitraly function of P. 
For the ground State the centre-of-mass momentum P = hQ should be equal to zero. 
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Thus, we get rid of the R-dependence in the eigenvalue problem. The rdependent 
part of the wavefunction can be chosen as 

Gvar(r) = ( x ~ " / T )  exp(-Av) (17) 

where X is the variational parameter and the polaron radius ap is used as the unit 
of length. Choosing f,(r) = 2uk(&Jcos(~x? . ~ ) l & ~ ) ,  we get the following simple 
expression for the expectation value of the effective Hamiltonian: 

E,,, = (AarlHe@i@"ar) = 2xz t P A  - s a x  + sax3 (1s) 

where energy is expressed in units of hw, the Frohlich electron-phonon coupling 
constant a = e2/2eTwap: p = 2a/ ( l  - q), and q = <-/eo is the ratio of the 
dielectric constants. A mmmization of the right-hand side of equation (18) with 
respect to X yields the variational upper bounds E,,, which-for all values of a 
and @-are considerably larger than the ground-state energy of the two polarons 
calculated by the weak-coupling method [16] (cf equation (22)). The simple approach 
presented above was a subject of paper [6]. In [6], however, the last term in equation 
(16) has been omitted, which in turn leads to the lack of the last term in equation 
(1s). The correct form given by equation (U) provides no binding of the bipolaron 
in the entire range of Q and 0. Therefore, such a simple approach cannot be helpful 
in the problem of the bipolaron. 

In an early stage of our work on the bipolaron problem, we tried to use a more 
elaborated uial wavefunction instead of (17). Moreover, the function fk(v) was 
determined in the minimization procedure. We obtained slightly better estimates in 
comparison with those resulting from equation (1s). However, no binding had still 
been obtained. These negative results indicate that the translationally invariant trial 
wavefunction of the type given by equations (S), (9) and (14) is not flexible enough 
to provide the stability of the bipolaron. 

For this reason in [4,5] the trial wavefunction has been proposed in a more general 
form which admits the translationally invariant wavefunction as a special case. The 
unitary transformation applied in [4,5] is given by equations (9), (12) and (13). This 
transformation leads to the effective Hamiltonian (equations (11) and (12) in [5]), 
which is dependent on the three distances J ' ~ ~  = Irl - vZI,v1 = lvll and r2 = 1r21. 
Therefore, the electronic part of the wavefunction should also be dependent on these 
distances. A more detailed discussion of the choice of the electronic wavefunction is 
contained in [5,17]. 

3. Results 

The first results showing the stability of the bipolaron with the help of the method of 
optimized canonical transformation have been given in [4,5]. In this paper, supple- 
mentary numerical results are presented. 

Tbo polarons form a stable bipolaron if the ground-state energy Ebipel of the 
bipolaron is lower than the ground-state energy 2Epo, of the two polarons, Le. 
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This means that the binding energy W defined as 
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'' = Epol - Ebipol (20) 
is positive. Below we first show the very resrrictive conditions on the stability of the 
bipolaron (table 1) and next we shall argue how they can be extended. The values 
of the material parameters in table 1 have been obtained from inequality (19) by 
substituting into it the free-polaron energy calculated by the functional-integration 
method [lS]. This method provides the best estimates of the free-polaron energy 
in the region 3 < a < 30. The values of ole and vc in table 1 are the limits of 
the bipolaron stability region determined with much caution, which means that the 
bipolarons are stable at least if Q 2 CY, and 11 < 7 1 c ,  but their stability outside this 
region is not excluded. 

Table 1. Emmated critical values 01 the electron-phonon wupling constant cyc and the 
ratio of the optical-to-static dielectric conscans 7 j c ,  

ar 7.3 7.5 8 Y 11 15 20 30 40 M 
qc 0 0.010 0.029 0.056 0.0% 0.115 0.130 0.138 0.139 0.140 

Table 2. Upper b u n d s  on lhe ground-state energy of the lree polaron calculated with 
the help ot the optimized canonical transformation ( E h , ) ,  functional-integration [le] 
(E$L) and Pekafs strong-coupling method [19,20] ( E L ) .  The energies are expressed 
in mils of hw and measured with respect to the bottom of the conduction band. 

U 7 Y 11 20 30 35 40 50 

EAGL -8,1374 -11.538 -15.827 -45.334 -96.524 -133.22 -173.37 -269.70 
E,", T -5.3171 -8.7896 -13.130 -43.405 -97.662 -13293 -173.62 -271.28 

Determining the criteria of the bipolaron stability we can apply the same compu- 
tational procedure for both the polaron and the bipolaron. The method of optimized 
canonical transformation yields the estimates Etol of the free-polaron energy, which 
are quoted in table 2 These values have been obtained from our calculations 1151 
for the bound polaron by neglecting the Coulomb potential of the centre. If the 
interelectron separation rI2 - as in the electronic wavefunction (cf equation (13) in 
[SI), then the ground-state energy of the bipolaron calculated by the present approach 
goes over into the double ground-state energy of the polaron calculated according to 
[15] in the strong-coupling limit. Thus, both thc approaches to the polaron problem 
are equivalent. In table 2, the upper bounds Ekl are compared with the results ol 
the functional-integration method [U] ( E$L) and strong-coupling method [l, 19,201 
(Eb,) .  The strong-coupling limit for the ground-state energy of the polaron is given 
by the analytical expression [ 19,201 

= - 0 . 1 0 8 5 1 3 a 2 ~ .  (21) 

The upper bound Etol coincides with the result of the Lee-Low-Pines 1161 weak- 
coupling method, i.e. 

E$' = - a h 4  
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up to a = 6.34. For stronger electron-phonon couplings the bound E;, lies below 
EbY and becomes comparable with E&YL [lS]. In the region 30 < a < 50, the 
present approach provides the best upper bounds for the ground-state energy of 
the free polaron. Therefore at least in this region we can use the values EA 
in calculations of the binding energy of the bipolaron. We shall argue that trl 
application of these upper bounds in the entire region of a can also be justfied. 

Let us consider equation (20) defining the binding energy of the bipolaron. When 
calculating both the energies Epo, and Ebipl with the help of the same variational 
procedure, one can expect that the upper bound for the polaron energy is closer to 
the exact value than that for the bipolaron because of a greater complexity of the 
eigenvalue problem for the bipolaron. We can express this property quantitatively 
by introducing the error A E  defined as a difference between the variational and 
exact energy. Then, we have the following inequalities: AE,,,, 2 0, AEbipal 2 0 and 
A(2EpaI) < AEbiyol. It follows from these inequalities that, if W,, > 0 for the 
variational binding energy obtained by substituting into equation (20) the variational 
upper bounds on Eyol and then lVeUcG > 0, too. Therefore, if the condition 
for stability is fulfilled for the variational estimates of E and Ebiyal, it should also 
be fulfilled for the exact values of both the energies. particular, the results of 
calculations of the binding energy (table 3) obtained with the use of the estimates 
E& allow us to draw conclusions about the stability of the bipolaron. A similar 
procedure was applied by Bassani el a1 [7],  who use the estimates E;? [16], which 
for large a are worse than the present estimates Ekl. 

Table 3. Binding eneQy of the bipolaron in unils of hw calculated with lhe use of the 
estimates E$ of the free-polaron energy. 

Binding enera. tor [lie following values of oi 
IJ 5.5 6 7 8 9 10 15 20 

0 0.086 0.601 1.567 2.410 3.346 4.376 11.12 20.51 
0.01 0.002 0.487 1.410 2.198 3.04s 4.037 10.32 19.07 
0.1 0 0 U O.ZZ 0.4% 0.777 2.782 5.341 

Such a procedure allows us to extend the region of values of material parameters 
for which the stability of the bipolaron is expected. This region is much broader than 
that determined with the help of table 1. The smallest value of the electron-phonon 
coupling constant at which the bipolaron is stable is estimated as 01, P 5.4 for the 
optical-to-static dielectric constant ratio 77 = 0. The critical value ac increases with 
increasing 7). For example, a, 7.2 for 17 = 0.1. 

4. Discussion 

The binding energy and the stability region of the bipolaron obtained by the present 
method are larger than those given by Bassani et a1 [7] and Verbist er a1 [S,9]. The 
values of the bipolaron binding energy calculated by Bassani et a1 [7] are one order 
of magnitude smaller than the present results and a, 5 6 for rl = 0. Because of the 
use of the functional-integration approach [S, 91, which overestimates the contribution 
of the Coulomb potential, the critical values of the strength p of this potential are 
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smaller than those obtained by the present method, e.g. for cy = 9 Verbist er a1 
[9] obtained p, = 1858 in comparison with the present value p, = 19.07. The 
estimated [S,9] value of a, (for 7 = 0) is aC = 6.8. 

The bipolaron energy can be evaluated with the help of the strong-coupling 
method which is based on Pekar's [l] approach to the polaron problem. This ap- 
proach leads to formula (21) for the ground-state energy of the polaron 119,201. 
Thble 2 shows that this estimate becomes useful for very large a. Pekar's method 
applied to the bipolaron problem provides estimates [21-231 of the bipolaron ground- 
staste energy which are also proportional to U? with coelficients of proportionality 
dependent on 7. It has been shown [SI that the bipolaron energy varies as cy2 only 
for very strong electron-phonon coupling, i.e. in this case the ratio W/E,, is in- 
dependent of a. However, for a < 30 the dependence of the bipolaron energy on 
a beconies more complicated and cannot be approximated by any simple analytical 
formula. The best estimates of the binding energy W and the critical value qC below 
which the bipolaron is stable obtained [23] with the use of the strongcoupling method 
of Pekar are 13;p/lE~,l = 0.42 (for 11 =0) and 11,' = 0.125. The corresponding values 
obtained with the help of the present approach are M'A/IEto,I = 0.49 (for a = 50 
and t )  = 0) and .I]: = 0.140 (for c\ = 50). Therefore, in the strong-coupling regime 
the present method provides a larger binding energy and a broader region of the 
bipolaron stability than those obtained in [21-231. 

The present approach is based on the variational trial wavefu~nction which admits 
translational symmetry. However, the lowest upper bounds for the bipolaron ground- 
state energy have been obtained for gk f 0, Le. for the trial wavefunction with 
the broken translational symmetry, which describes a localized system. Despite the 
lack of this symmetry, in a broad range of material parameters, the present upper 
bounds for the energy of the bipolaron are better than those obtained with the help 
of translationally invariant methods. 

It  is interesting that for the free polaron a similar property of the upper bounds 
on the ground-state energy can be observed. The translationally invariant method 
[lS], which is a generalization of Feynman's [24] theory, yields the best estimates of 
the polaron ground-state e n e r a  only for (Y < 30 (cf table 2). For larger valucs of the 
electron-phonon coupling constant the better estimates are provided by the methods 
11,151 which apply the localized trial wavefunctions. In particular, for a > 50 the 
best upper bounds for the polaron ground-state energy are gjven by formula (21). 

These results can be regarded as a strong suggestion of the tendency to localization 
of both the polaron and the bipolaron. This means that in thc strong-coupling limit 
the polaron as well as the bipolaron can be treated as self-trapped systems. An 
additional problem arises for the bipolaron which is that the two-electron system is 
unstable for weak electron-phonon coupling. The self-trapping of the bipolaron can 
be connected with its transition into the stable (bound) state which, therefore, appears 
for smaller values of the electron-phonon coupling constant than the self-trapping of 
the polaron. 

However, we have to stress that the above conclusions are based on the results 
of variational calculations. We cannot therefore exclude that the stability of the 
bipolaron which has been obtained with the help of the localized trial wavefunction 
is the result of an extremely large effective mass of the bipolaron. The first estimates 
[9] indicate that this mass takes on large values. 

In the framework of the present method, a physical interpretation [SI can be 
provided of our main outcome stating that the two electrons form a bound statc for a 

J Adantowski and S Bednarek 
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sufficiently strong coupling with phonons. The formation of this state is the result of 
two competing effects. On the one hand, the electron-electron coulombic repulsion 
counteracts the binding of the pair. This interaction has a two-body character. On the 
other hand, the electrons interact with the lattice polarization field, which induces a 
potential well acting on the electrons as an attractive potential. The L o  phonons are 
the quanta of this field; therefore, this interaction has a many-body character. The 
polarization field screens the electron-electron interaction and considerably weakens 
it. However, the effective polaron-polaron interaction remains repulsive and provides 
a positive contribution to the energy of the system. The negative contribution is due 
to a lowering of the self-energy of the two polarons in the bound state with respect 
to that of the two separate polarons. This can be explained as follows. The double 
electronic charge of the bipolaron induces a more extended and deeper potential well 
than that for the single polaron. The interaction with this potential well is stronger 
for the bipolaron than for the two separate polarons and leads to instantaneous self- 
trapping which should, therefore, appear for the waker electron-phonon coupling 
in the case of the bipolaron than in the case of the polaron. According to the 
present approach, this effect is most important for the binding of the polarons into 
the bipolaron. 

Let us consider the role of large bipolarons in a possible explanation of super- 
conductivity [lO-12]. According to the bipolaronic mechanism of high-temperature 
superconductivity discussed by Emin [12], a necessary condition for the material to 
become a bipolaronic supraconductor is that the bipolarons be stable and mobile. The 
results of the present paper suggest that the stability o l  the bipolarons is achieved if 
they are localized (or almost localized); thus, their effective mass should be extremely 
large and their mobility negligibly small. The superconducting transition temperature 
is the temperature of the BoseEinstein condensation of bipolarons [12], which is in- 
versely proportional to the bipolaron effective mass and is predicted to be vety small. 
Therefore, we do not expect that the large bipolarons formed in three-dimensional 
isotropic crystals play a role in the bipolaronic mechanism of high-temperature su- 
perconductivity [12]. However, it is not excluded that the bipolarons created by the 
combined interaction of the electrons with both the optical and the acoustic phonons 
[12] or soft vibrational modes (131 contribute to the conductivity of crystals. More- 
over, bipolaronic superconductivity can appear in two-dimensional Structures [9] and 
strongly anisotropic crystals. 

Direct experimental evidence for the existence of large (Frohlich) bipolarons 
should be possible in strongly polar crystals with the electron-Lo coupling constant 
o Y 5.4 or larger. Looking for materials which fulfil the conditions of the bipo- 
laron stability we can notice that ionic crystals [25] poisess large enough values of 
the electron-phonon coupling constant a; nevertheless, for these materials the ra- 
tio of dielectric constants 9 is larger than 0.2, which exceeds the estimated intetval 
77 < qc LI 0.1 in which the bipolarons are expected to be stable. 

The bipolaron ground-state energy level should lie in the band gap and should 
be shifted downwards by an amount W with respect to the bottom of the polaronic 
conduction band. Because the LO phonon energy takes on values [25] from 10 to 
100 mey  this shift is estimated to be of the order of 1-10 meV It is an open question 
whether the excited states of the bipolaron are also bound like those of the exciton. 

If the system of polarons is subjected to any confinement potential, we expect the 
conditions of bipolaron stability to be more easily fulfilled. Such conditions can be 
achieved in quantum well structures and low-dimensional crystals [7,9,26,27]. The 
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anisotropy of the crystal is also favourable for the stability of bipolarons. 
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5. Conclusions 

The results of the present work show that large bipolarons are stable in a broad region 
of material parameters characterizing the polar crystals. The method of optimized 
canonical transformation provides estimates of the binding energy of the bipolaron 
which-in most cases-are better than those obtained by other methods. We have 
estimated the values of material parameters indicating for which materials a possible 
experimental observation of the large bipolarons is expected. In particular, we have 
found that the conditions of bipolaron stability are fulfilled il the electron-phonon 
coupling constant is about 5.4. 

It results from the present calculations that the optimum trial wavefunction for the 
bipolaron is localized. It allows us to make a suggestion that the large bipolarons are 
self-trapped (similarly to the free polarons in the strong-coupling limit). Therefore, 
the large bipolarons should possess a very large effective mass and a negligibly small 
mobility. We do not expect the large bipolarons to play an essential role in the 
bipolaronic mechanism of superconductivity in three-dimensional crystals. 

Appendix 

Let us consider two methods of constructing the effective Hamiltonian (equation (15)). 
The unitary transformation U in equation (15) can be chosen as either the single 
transformation U = U l ,  similar to [S, U], or the product of two transformations U = 
U, = Tp,t(B)L'o, similar to [7,14]. The relevant transformations can be expressed in 
the form 

('41) LrJ = exp(S,  - S j )  t (j = 0,1) 

where 

and S, is given by equation (14). 

effective Hamiltonian, i.e. 
The transformations U, and U? are equivalent because they provide the same 

N e ,  = ( X o I ~ I H ~ ' 1 I X o )  = ( X o l ~ ; ~ U , / S o ) .  (-43) 

The validity of equation (A3) results from the following calculation: 

U,IXo) = T,hUoIXo) = TphuoT$lTph\Xo) = TphUoT$'1Xo) 

= exp(TphSJihl - TphsiTG')l~o) ==p(S1 - S!)lxo) = U I / X O ) ( W  

where we make use of the following properties of the translation operator: TG1(R) = 
T$,(R) and TPhlxo) = Ixo). The effective Hamiltonian of the system can be deter- 
mmed by either of the expectation values in equation (A3). 
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